Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 802
Filtrar
1.
Sci Rep ; 14(1): 7652, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561456

RESUMO

Considering the effect of SIRT1 on improving myocardial fibrosis and GAS5 inhibiting occurrence and development of myocardial fibrosis at the cellular level, the aim of the present study was to investigate whether LncRNA GAS5 could attenuate cardiac fibrosis through regulating mir-217/SIRT1, and whether the NLRP3 inflammasome activation was involved in this process. Isoprenaline (ISO) was given subcutaneously to the male C57BL/6 mice to induce myocardial fibrosis and the AAV9 vectors were randomly injected into the left ventricle of each mouse to overexpress GAS5. Primary myocardial fibroblasts (MCFs) derived from neonatal C57BL/6 mice and TGF-ß1 were used to induce fibrosis. And the GAS5 overexpressed MCFs were treated with mir-217 mimics and mir-217 inhibitor respectively. Then the assays of expression levels of NLRP3, Caspase-1, IL-1ß and SIRT1 were conducted. The findings indicated that the overexpression of GAS5 reduced the expression levels of collagen, NLRP3, Capase-1, IL-1ß and SIRT1 in ISO treated mice and TGF-ß1 treated MCFs. However, this effect was significantly weakened after mir-217 overexpression, but was further enhanced after knockdown of mir-217. mir-217 down-regulates the expression of SIRT1, leading to increased activation of the NLRP3 inflammasome and subsequent pyroptosis. LncRNA GAS5 alleviates cardiac fibrosis induced via regulating mir-217/SIRT1 pathway.


Assuntos
MicroRNAs , RNA Longo não Codificante , Camundongos , Masculino , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Isoproterenol/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamassomos , Sirtuína 1/genética , Camundongos Endogâmicos C57BL , Fibrose
2.
Physiol Rep ; 12(5): e15966, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444056

RESUMO

Previous studies revealed a controversial role of mechanistic target of rapamycin complex 1 (mTORC1) and mTORC1-regulated macroautophagy in isoproterenol (ISO)-induced cardiac injury. Here we investigated the role of mTORC1 and potential underlying mechanisms in ISO-induced cardiomyocyte necrosis. Two consecutive daily injections of ISO (85 mg/kg, s.c.) or vehicle control (CTL) were administered to C57BL/6J mice with or without rapamycin (RAP, 5 mg/kg, i.p.) pretreatment. Western blot analyses showed that myocardial mTORC1 signaling and the RIPK1-RIPK3-MLKL necroptotic pathway were activated, mRNA expression analyses revealed downregulation of representative TFEB target genes, and Evan's blue dye uptake assays detected increased cardiomyocyte necrosis in ISO-treated mice. However, RAP pretreatment prevented or significantly attenuated the ISO-induced cardiomyocyte necrosis, myocardial inflammation, downregulation of TFEB target genes, and activation of the RIPK1-RIPK3-MLKL pathway. LC3-II flux assays confirmed the impairment of myocardial autophagic flux in the ISO-treated mice. In cultured neonatal rat cardiomyocytes, mTORC1 signaling was also activated by ISO, and inhibition of mTORC1 by RAP attenuated ISO-induced cytotoxicity. These findings suggest that mTORC1 hyperactivation and resultant suppression of macroautophagy play a major role in the induction of cardiomyocyte necroptosis by catecholamine surges, identifying mTORC1 inhibition as a potential strategy to treat heart diseases with catecholamine surges.


Assuntos
Catecolaminas , Miócitos Cardíacos , Animais , Camundongos , Ratos , Camundongos Endogâmicos C57BL , Macroautofagia , Necroptose , Isoproterenol/toxicidade , Alvo Mecanístico do Complexo 1 de Rapamicina , Necrose
3.
J Biochem Mol Toxicol ; 38(3): e23668, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439645

RESUMO

Cardiovascular diseases cause a large number of deaths throughout the world. No research was conducted earlier on p-coumaric acid's effect on tachycardia, inflammation, ion pump dysfunction, and electrolyte imbalance. Hence, we appraised the above-said parameters in isoproterenol-induced myocardial infarcted rats. This investigation included 24 male albino Wistar rats in 4 groups. Normal control Group 1, p-coumaric acid (8 mg/kg body weight) alone treated Group 2, Isoproterenol (100 mg/kg body weight) induced myocardial infarcted Group 3, p-coumaric acid (8 mg/kg body weight) pretreated isoproterenol (100 mg/kg body weight) induced Group 4. After 1 day of the last dose of isoproterenol injection (day 10), rats were killed and blood and heart were taken and inflammatory markers, lipid peroxidation, nonenzymatic antioxidants, ion pumps, and electrolytes were measured. The heart rate, serum cardiac troponin-T, serum/plasma inflammatory markers, and heart proinflammatory cytokines were raised in isoproterenol-induced rats. Isoproterenol also enhanced plasma lipid peroxidation, lessened plasma nonenzymatic antioxidants, and altered heart ion pumps and serum and heart electrolytes. In this study, p-coumaric acid pretreatment orally for 7 days to isoproterenol-induced myocardial infarcted rats prevented changes in the above-cited parameters. p-Coumaric acid's anti-tachycardial, anti-inflammatory, anti-ion pump dysfunction and anti-electrolyte imbalance properties are the mechanisms for these cardioprotective effects.


Assuntos
Ácidos Cumáricos , Infarto do Miocárdio , Taquicardia , Masculino , Animais , Ratos , Isoproterenol/toxicidade , Taquicardia/induzido quimicamente , Taquicardia/tratamento farmacológico , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Antioxidantes/farmacologia , Bombas de Íon , Ratos Wistar , Peso Corporal
4.
Molecules ; 29(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38398512

RESUMO

Cardiac hypertrophy (CH) is an important characteristic in heart failure development. Chlorogenic acid (CGA), a crucial bioactive compound from honeysuckle, is reported to protect against CH. However, its underlying mechanism of action remains incompletely elucidated. Therefore, this study aimed to explore the mechanism underlying the protective effect of CGA on CH. This study established a CH model by stimulating AC16 cells with isoproterenol (Iso). The observed significant decrease in cell surface area, evaluated through fluorescence staining, along with the downregulation of CH-related markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and ß-myosin heavy chain (ß-MHC) at both mRNA and protein levels, provide compelling evidence of the protective effect of CGA against isoproterenol-induced CH. Mechanistically, CGA induced the expression of glycogen synthase kinase 3ß (GSK-3ß) while concurrently attenuating the expression of the core protein ß-catenin in the Wnt/ß-catenin signaling pathway. Furthermore, the experiment utilized the Wnt signaling activator IM-12 to observe its ability to modulate the impact of CGA pretreatment on the development of CH. Using the Gene Expression Omnibus (GEO) database combined with online platforms and tools, this study identified Wnt-related genes influenced by CGA in hypertrophic cardiomyopathy (HCM) and further validated the correlation between CGA and the Wnt/ß-catenin signaling pathway in CH. This result provides new insights into the molecular mechanisms underlying the protective effect of CGA against CH, indicating CGA as a promising candidate for the prevention and treatment of heart diseases.


Assuntos
Ácido Clorogênico , Via de Sinalização Wnt , Humanos , Isoproterenol/toxicidade , Ácido Clorogênico/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , beta Catenina/metabolismo
5.
Biomed Pharmacother ; 172: 116241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330711

RESUMO

OBJECTIVE: Pathologic cardiac hypertrophy (PCH) is a precursor to heart failure. Amydrium sinense (Engl.) H. Li (AS), a traditional Chinese medicinal plant, has been extensively utilized to treat chronic inflammatory diseases. However, the therapeutic effect of ASWE on PCH and its underlying mechanisms are still not fully understood. METHODS: A cardiac hypertrophy model was established by treating C57BL/6 J mice and neonatal rat cardiomyocytes (NRCMs) in vitro with isoprenaline (ISO) in this study. The antihypertrophic effects of AS water extract (ASWE) on cardiac function, histopathologic manifestations, cell surface area and expression levels of hypertrophic biomarkers were examined. Subsequently, the impact of ASWE on inflammatory factors, p65 nuclear translocation and NF-κB activation was investigated to elucidate the underlying mechanisms. RESULTS: In the present study, we observed that oral administration of ASWE effectively improved ISO-induced cardiac hypertrophy in mice, as evidenced by histopathological manifestations and the expression levels of hypertrophic markers. Furthermore, the in vitro experiments demonstrated that ASWE treatment inhibited cardiac hypertrophy and suppressed inflammation response in ISO-treated NRCMs. Mechanically, our findings provided evidence that ASWE suppressed inflammation response by repressing p65 nuclear translocation and NF-κB activation. ASWE was found to possess the capability of inhibiting inflammation response and cardiac hypertrophy induced by ISO. CONCLUSION: To sum up, ASWE treatment was shown to attenuate ISO-induced cardiac hypertrophy by inhibiting cardiac inflammation via preventing the activation of the NF-kB signaling pathway. These findings provided scientific evidence for the development of ASWE as a novel therapeutic drug for PCH treatment.


Assuntos
Araceae , NF-kappa B , Animais , Camundongos , Ratos , Camundongos Endogâmicos C57BL , Isoproterenol/toxicidade , Transdução de Sinais , Íons , Lítio , Artesunato , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
6.
Toxicol Appl Pharmacol ; 484: 116840, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307258

RESUMO

Isoprenaline hydrochloride (IH) is a ß-adrenergic receptor agonist commonly used in the treatment of hypotension, shock, asthma, and other diseases. However, IH-induced cardiotoxicity limits its application. A large number of studies have shown that long noncoding RNA (lncRNA) regulates the occurrence and development of cardiovascular diseases. This study aimed to investigate whether abnormal lncRNA expression is involved in IH-mediated cardiotoxicity. First, the Sprague-Dawley (SD) rat myocardial injury model was established. Circulating exosomes were extracted from the plasma of rats and identified. In total, 108 differentially expressed (DE) lncRNAs and 150 DE mRNAs were identified by sequencing. These results indicate that these lncRNAs and mRNAs are substantially involved in chemical cardiotoxicity. Further signaling pathway and functional studies indicated that lncRNAs and mRNAs regulate several biological processes, such as selective mRNA splicing through spliceosomes, participate in sphingolipid metabolic pathways, and play a certain role in the circulatory system. Finally, we obtained 3 upregulated lncRNAs through reverse transcription-quantitative PCR (RT-qPCR) verification and selected target lncRNA-mRNA pairs according to the regulatory relationship of lncRNA/mRNA, some of which were associated with myocardial injury. This study provides valuable insights into the role of lncRNAs as novel biomarkers of chemical-induced cardiotoxicity.


Assuntos
Exossomos , RNA Longo não Codificante , Ratos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Isoproterenol/toxicidade , Redes Reguladoras de Genes , Ratos Sprague-Dawley , Cardiotoxicidade , Exossomos/genética , Exossomos/metabolismo , RNA Mensageiro/metabolismo
7.
Toxicology ; 503: 153752, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369011

RESUMO

The study sought to assess the detrimental effects of isoproterenol (ISO) on major organs and investigate the potential reversibility of these adverse reactions in mice. Male mice were divided into normal control, 0.2 mg/kg.d and 3.0 mg/kg.d ISO groups, and were subcutaneously administered of the respective doses for 14 consecutive days. Subsequently, a recovery period experiment was conducted, replicating the aforementioned procedure, followed by an additional 2-week recovery period for the mice. Following 14 consecutive days of administration, mice treated with ISO exhibited notable cardiac damage manifested by abnormal ECG patterns, dysregulated energy metabolism, elevated cardiac hypertrophy, and increased heart pathological score. Additionally, the administration of ISO resulted in liver and kidney damage, as evidenced by increased pathological score, serum albumin level, and urea level. Lung damage was also observed, indicated by an increase in lung pathological score. Furthermore, the administration of ISO at a dosage of 3.0 mg/kg.d resulted in a decrease in liver mass index, serum iron content, and an increase in lung mass index. After a 2-week recovery period, mice treated with ISO showed abnormalities in ECG patterns and dysregulated myocardial energy metabolism, accompanied by a decrease in serum iron content. Histopathological examinations revealed continued pathological changes in the heart and lung, as well as significant hemosiderin deposition in the spleen. Furthermore, the group treated with ISO at a dosage of 3.0 mg/kg.d showed an increase in serum AST and TP levels. In summary, the study demonstrates that both 0.2 mg/kg.d and 3.0 mg/kg.d doses of ISO can induce damage to the heart, liver, lung, kidney, and spleen, with the higher dose causing more severe injuries. After a 2-week withdrawal period, the liver, kidney, and thymus injuries caused by 0.2 mg/kg ISO shows signs of recovery, while damage to the heart, lung, and spleen persists. The thymus injury mostly recovers, with minimal kidney pathology, but significant damage to the heart, liver, and lung remains even after the withdrawal period for the 3.0 mg/kg ISO dose.


Assuntos
Cardiomiopatias , Miocárdio , Ratos , Masculino , Camundongos , Animais , Isoproterenol/toxicidade , Isoproterenol/metabolismo , Ratos Wistar , Miocárdio/metabolismo , Cardiomiopatias/induzido quimicamente , Metabolismo Energético , Ferro/metabolismo
8.
Physiol Int ; 111(1): 80-96, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38261080

RESUMO

Background: Isoprenaline (ISO), a synthetic catecholamine and a ß-adrenoceptor agonist, is widely used to develop an experimental model of myocardial injury (MI) in rats. The leading hypothesis for ISO-induced MI in rats is that it results from catecholamine overstimulation, oxidative stress, inflammatory responses, and development of cardiomyopathy during ISO administration. Folic acid (FA) reduces oxidative stress, improves endothelial function and prevents apoptosis, thereby contributing to cardiovascular protection. This study aimed to investigate the potentially protective effect of FA pretreatment on ISO-induced MI in rats. Methods: For 7 days, adult male Wistar albino rats were pretreated with 5 mg/kg/day of FA. On the sixth and seventh days, MI in rats was induced by administering 85 mg/kg/day of ISO. Prooxidant markers in plasma samples, antioxidant capacity in erythrocyte lysates, cardiac damage markers, lipid profile, electrocardiography (ECG) and histopathological analysis were evaluated. Results: FA pretreatment significantly alleviated changes induced by ISO; it decreased the homocysteine and high-sensitivity troponin I level. FA moderately decreased the reactive oxygen species (ROS) levels (superoxide anion radical, hydrogen peroxide and thiobarbituric acid reactive substances) and improved the antioxidant activities of catalase, superoxide dismutase and reduced glutathione. ISO reduced the nitrite level and FA significantly alleviated this change. Conclusion: It can be concluded that FA, as a mild antioxidant, could be an appropriate cardioprotective substance in the rat model of ISO-induced MI.


Assuntos
Antioxidantes , Infarto do Miocárdio , Ratos , Masculino , Animais , Isoproterenol/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Miocárdio/metabolismo , Ratos Wistar , Ácido Fólico/efeitos adversos , Ácido Fólico/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 145-159, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382601

RESUMO

Myocardial infarction (MI) is a major cause of mortality and disability globally. MI results from acute or chronic myocardial ischemia characterized by an imbalance of oxygen demand and supply, leading to irreversible myocardial injury. Despite several significant efforts in the understanding of MI, the therapy of MI is not satisfactory due to its complicated pathophysiology. Recently, therapeutic potential of targeting pyruvate kinase M2 (PKM2) has been postulated in several cardiovascular diseases. PKM2 gene knockout and expression studies implicated the role of PKM2 in MI. However, the effects of pharmacological interventions targeting PKM2 have not been investigated in MI. Therefore, in the present study, effect of PKM2 inhibitor has been investigated in the MI along with elucidation of possible mechanism(s). MI in rats was induced by administrations of isoproterenol (ISO) at a dose of 100 mg/kg s.c. for two consecutives days at 24-h interval. At the same time, shikonin (PKM2 inhibitor) was administered at 2 and 4 mg/kg in ISO-induced MI rats. After the shikonin treatment, the ventricular functions were measured using a PV-loop system. Plasma MI injury markers, cardiac histology, and immunoblotting were performed to elucidate the molecular mechanism. Treatment of shikonin 2 and 4 mg/kg ameliorated cardiac injury, reduced infarct size, biochemical alterations, ventricular dysfunction, and cardiac fibrosis in ISO-induced MI. Expression of PKM2 in the ventricle was reduced while PKM1 expression increased in the shikonin treated group, indicating PKM2 inhibition restores PKM1 expression. In addition, PKM splicing protein (hnRNPA2B1 & PTBP1), HIF-1α, and caspase-3 expression were reduced after shikonin treatment. Our findings suggest that pharmacological inhibition of PKM2 with shikonin could be a potential therapeutic strategy to treat MI.


Assuntos
Infarto do Miocárdio , Piruvato Quinase , Ratos , Animais , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Isoproterenol/toxicidade , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Hipóxia , Apoptose , Fibrose , Inflamação
10.
Acta Pharmacol Sin ; 45(3): 531-544, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919475

RESUMO

Cardiac inflammation contributes to heart failure (HF) induced by isoproterenol (ISO) through activating ß-adrenergic receptors (ß-AR). Recent evidence shows that myeloid differentiation factor 2 (MD2), a key protein in endotoxin-induced inflammation, mediates inflammatory heart diseases. In this study, we investigated the role of MD2 in ISO-ß-AR-induced heart injuries and HF. Mice were infused with ISO (30 mg·kg-1·d-1) via osmotic mini-pumps for 2 weeks. We showed that MD2 in cardiomyocytes and cardiac macrophages was significantly increased and activated in the heart tissues of ISO-challenged mice. Either MD2 knockout or administration of MD2 inhibitor L6H21 (10 mg/kg every 2 days, i.g.) could prevent mouse hearts from ISO-induced inflammation, remodelling and dysfunction. Bone marrow transplantation study revealed that both cardiomyocyte MD2 and bone marrow-derived macrophage MD2 contributed to ISO-induced cardiac inflammation and injuries. In ISO-treated H9c2 cardiomyocyte-like cells, neonatal rat primary cardiomyocytes and primary mouse peritoneal macrophages, MD2 knockout or pre-treatment with L6H21 (10 µM) alleviated ISO-induced inflammatory responses, and the conditioned medium from ISO-challenged macrophages promoted the hypertrophy and fibrosis in cardiomyocytes and fibroblasts. We demonstrated that ISO induced MD2 activation in cardiomyocytes via ß1-AR-cAMP-PKA-ROS signalling axis, and induced inflammatory responses in macrophages via ß2-AR-cAMP-PKA-ROS axis. This study identifies MD2 as a key inflammatory mediator and a promising therapeutic target for ISO-induced heart failure.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Ratos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Isoproterenol/toxicidade , Receptores Adrenérgicos beta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos/metabolismo
11.
Pharmacology ; 109(1): 1-9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37879298

RESUMO

INTRODUCTION: Ivermectin (IVM) is a broad-spectrum anti-parasitic agent with potential antibacterial, antiviral, and anti-cancer effects. There are limited studies on the effects of IVM on cardiovascular diseases, so the present study sought to determine the effects of pre-treatment with IVM on myocardial ischemia in both ex vivo and in vivo. METHODS: In the ex vivo part, two groups of control and treated rats with IVM (0.2 mg/kg) were examined for cardiac function and arrhythmias by isolated heart perfusion. In the in vivo part, four groups, namely, control, IVM, Iso (MI), and Iso + IVM 0.2 mg/kg were used. Subcutaneous injection of isoproterenol (100 mg/kg/day) for 2 consecutive days was used for the induction of myocardial infarction (MI) in male Wistar rats. Then electrocardiogram, hemodynamic factors, cardiac hypertrophy, and malondialdehyde (MDA) levels were investigated. RESULTS: The ex vivo results showed that administration of IVM induces cardiac arrhythmia and decreases the left ventricular maximal rate of pressure increase (contractility) and maximal rate of pressure decline (relaxation). The isoproterenol-induced MI model used as an in vivo model showed that cardiac hypertrophy were increased with no improvement in the hemodynamic and electrocardiogram pattern in the IVM-treated group in comparison to MI (Iso) group. However, the MDA level was lower in the IVM-treated group. CONCLUSION: IVM pre-treatment demonstrates detrimental effects in cardiac ischemia through exacerbation of cardiac arrhythmia, myocardial dysfunction, and increased cardiac hypertrophy. Therefore, the use of IVM in ischemic heart patients should be done with great caution.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , Ratos , Masculino , Animais , Isoproterenol/toxicidade , Ivermectina/efeitos adversos , Ratos Wistar , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/tratamento farmacológico , Cardiomegalia , Miocárdio
12.
Biomed Pharmacother ; 170: 116000, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070245

RESUMO

Formononetin, an isoflavone compound, has been extensively researched due to its various biological activities, including a potent protective effect on the cardiovascular system. However, the impact of formononetin on cardiac fibrosis has not been investigated. In this study, C57BL/6 mice were used to establish cardiac fibrosis animal models by subcutaneous injecting of isoproterenol (ISO) and formononetin was orally administrated. The results showed that formononetin reversed ISO-induced heart stiffness revealed by early-to-atrial wave ratio (E/A ratio). Masson staining, western blot, immunohistochemistry and real-time PCR exhibited that the cardiac fibrosis and fibrosis-related proteins (collage III, fibronectin, TGF-ß1, α-SMA, and vimentin) and genes (Col1a1, Col3a1, Acta2 and Tgfb1) induced by ISO were significantly suppressed by formononetin. Furthermore, by combining metabolomics and network pharmacology, we found three important targets (ALDH2, HADH, and MAOB), which are associated with mitochondrial function, were involved in the beneficial effect of formononetin. Further validation revealed that these three genes were more abundance in cardiomyocyte than in cardiac fibroblast. The mRNA expression of ALDH2 and HADH were decreased, while MOAB was increased in cardiomyocyte upon ISO treatment and these phenomena were reversed by formononetin. In addition, we investigated mitochondrial membrane potential and ROS production in cardiomyocytes, the results showed that formononetin effectively improved mitochondrial dysfunction induced by ISO. In summary, we demonstrated that formononetin via regulating the expressions of ALDH2, HADH, and MAOB in cardiomyocyte to improve mitochondrial dysfunction and alleviate ß-adrenergic activation cardiac fibrosis.


Assuntos
Cardiomiopatias , Isoflavonas , Doenças Mitocondriais , Animais , Camundongos , Isoproterenol/toxicidade , Transdução de Sinais , Camundongos Endogâmicos C57BL , Cardiomiopatias/patologia , Miócitos Cardíacos , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Fibrose , Doenças Mitocondriais/metabolismo
13.
J Biochem Mol Toxicol ; 38(1): e23531, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37724821

RESUMO

Myocardial infarction (MI) is a common type of ischemic heart disease that affects millions of people worldwide. In recent times, nanotechnology has become a very promising field with immense applications. The current exploration was conducted to synthesize the chitosan-sodium alginate-polyethylene glycol-Ally isothiocyanate nanocomposites (CSP-AIso-NCs) and evaluate their beneficial roles against the isoproterenol (ISO)-induced MI in rats. The CSP-AIso-NCs were prepared and characterized by several characterization techniques. The MI was initiated in the rats by the administration of 85 mg/kg of ISO for 2 days and treated with 10 and 20 mg/kg of CSP-AIso-NCs for 1 month. The changes in heart weight and bodyweight were measured. The cardiac function markers were assessed with echocardiography. The lipid profiles, Na+, K+, and Ca2+ ions, cardiac biomarkers, antioxidant parameters, and inflammatory cytokines were assessed using corresponding assay kits. The histopathological study was done on the heart tissues. The UV spectral analysis revealed the maximum peak at 208 nm, which confirms the formation of CSP-AIso-NCs. The FT-IR analysis revealed the occurrence of different functional groups, and the crystallinity of the CSP-AIso-NCs was proved by the XRD analysis. DLS analysis indicated the size of the CSP-AIso-NCs at 146.50 nm. The CSP-AIso-NCs treatment increased the bodyweight and decreased the HW/BW ratio in the MI rats. The status of lipids was reduced, and HDL was elevated in the CSP-AIso-NCs administered to MI rats. CSP-AIso-NCs decreased the LVEDs, LVEDd, and NT-proBNP and increased the LVEF level. The oxidative stress markers were decreased, and the antioxidants were increased by the CSP-AIso-NCs treatment in the MI rats. The Na+ and Ca+ ions were reduced, and the K+ ions were increased by the CSP-AIso-NCs. The interleukin-1ß and tumor necrosis factor-α were also depleted, and Nrf-2 was improved in the CSP-AIso-NCs administered to MI rats. The histological study revealed the ameliorative effects of CSP-AIso-NCs. Overall, our outcomes revealed that the CSP-AIso-NCs are effective against the ISO-induced MI rats. Hence, it could be a hopeful therapeutic nanomedicine for MI treatment.


Assuntos
Quitosana , Infarto do Miocárdio , Humanos , Ratos , Animais , Isoproterenol/toxicidade , Quitosana/farmacologia , Alginatos/farmacologia , Alginatos/metabolismo , Alginatos/uso terapêutico , Polietilenoglicóis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Antioxidantes/metabolismo , Estresse Oxidativo , Íons/metabolismo , Íons/farmacologia , Íons/uso terapêutico , Miocárdio/metabolismo
14.
Biomed Pharmacother ; 170: 116020, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147733

RESUMO

INTRODUCTION: Mitochondrial dysfunction causes myocardial disease. This study investigated the effects of MitoQ alone and in combination with moderate-intensity endurance training (EX) on cardiac function and content and mRNA expression of several proteins involved in mitochondrial quality control in isoproterenol (ISO)-induced heart injuries METHODS: Seven groups of CTL, ISO, ISO-EX, ISO-MitoQ-125, ISO-MitoQ-250, ISO-EX+MitoQ-125, and ISO-EX+MitoQ-250 were assigned. Rats were trained on a treadmill, and the MitoQ groups received MitoQ in drinking water for 8 weeks, starting one week after the induction of heart injury. Arterial pressure and cardiac function indices, mRNA expression, protein content, oxidant and antioxidant markers, fibrosis, and histopathological changes were assessed by physiograph, Real-Time PCR, immunofluorescence, calorimetry, Masson's trichrome, and H&E staining, respectively. RESULTS: The impacts of MitoQ-125, EX+MitoQ-125, and EX+MitoQ-250 on arterial pressure and left ventricular systolic pressure were higher than MitoQ-250 or EX alone. ± dp/dt max were higher in ISO-EX+MitoQ-125 and ISO-EX+MitoQ-250 than ISO-MitoQ-125 and ISO-MitoQ-250 groups, respectively. Histopathological scores and fibrosis decreased in ISO-EX, ISO-MitoQ-125, ISO-EX+MitoQ-125, and ISO-EX+MitoQ-250 groups. The restoration of MFN2, PINK-1, and FIS-1 changes was higher in ISO-EX+MitoQ-125 and ISO-EX+MitoQ-250 than ISO-EX, ISO-MitoQ-125 and ISO-MitoQ-250 groups. The expression of MFN2 and PINK-1 was lower in ISO-MitoQ-125 and ISO-EX+MitoQ-125 than ISO and CTL groups. The expression of FIS-1 in ISO-EX and ISO-EX+MitoQ-250 increased compared to CTL and ISO groups. MDA decreased in ISO-MitoQ-125 and ISO-EX+MitoQ-125 groups. CONCLUSION: Exercise and MitoQ combination have additive effects on cardiac function by modulating cardiac mitochondria quality. This study provided a possible therapy to treat heart injuries.


Assuntos
Treino Aeróbico , Traumatismos Cardíacos , Humanos , Ratos , Animais , Isoproterenol/toxicidade , Dinâmica Mitocondrial , Mitofagia , Mitocôndrias Cardíacas , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/prevenção & controle , Suplementos Nutricionais , Fibrose , RNA Mensageiro
15.
Life Sci ; 337: 122354, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38110076

RESUMO

AIM: Cardiac fibrosis is characterized by excessive accumulation of fibrous tissue, particularly collagens, in the myocardium. Accumulated fibrous tissue renders myocardium stiffer and reduces its contractility. Empagliflozin is an oral hypoglycemic agent with extra-diabetic functional profile toward maintaining cardiac functions. The present study aimed to examine protective effect of empagliflozin against an in-vivo model of cardiac fibrosis induced by isoprenaline and targeting TGF-ß/SMAD signaling as a possible pathway responsible for such effect. MAIN METHODS: Sixty animals were divided into six groups; the first was normal, and the second was treated with isoprenaline only (5 mg/kg/day I.P.) as a control. The third received pirfenidone (500 mg/kg/day P.O.), and the remaining groups received graded doses (5, 10, 20 mg/kg respectively) of empagliflozin for 14 days before fibrosis induction by isoprenaline (5 mg/kg/day) for 30 days. KEY FINDINGS: Isoprenaline increased cardiac enzymes, and cardiac tissues revealed elevated concentrations of transforming growth factor ß (TGF-ß1), monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor α (TNF-α), and c-jun N-terminal kinase (JNK) proteins. Expression of nuclear factor kappa B (NF-κB), alpha smooth muscle actin (α-SMA), collagens, suppressor of mothers against decapentaplegic (SMADs), connective tissue growth factor (CTGF), and fibronectin was upregulated. Empagliflozin improved the histological picture of heart tissue in comparison to fibrosis developed in controls, and protected against fibrosis through significant modulation of all mentioned parameters' concentrations and expressions. SIGNIFICANCE: Empagliflozin demonstrated a promising protective approach against biological model of cardiac fibrosis through an anti-fibrotic effect through targeting TGF-ß signaling pathways.


Assuntos
Transdução de Sinais , Fator de Crescimento Transformador beta , Ratos , Animais , Fator de Crescimento Transformador beta/metabolismo , Isoproterenol/toxicidade , Fator de Crescimento Transformador beta1/metabolismo , Fibrose , Colágeno/farmacologia
16.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139099

RESUMO

Pathological cardiac remodeling is associated with cardiovascular disease and can lead to heart failure. Nuclear factor-kappa B (NF-κB) is upregulated in the hypertrophic heart. Moreover, the expression of the G-protein-coupled receptor kinase 2 (GRK2) is increased and linked to the progression of heart failure. The inhibitory effects of paroxetine on GRK2 have been established. However, its protective effect on IκBα/NFκB signaling has not been elucidated. This study investigated the cardioprotective effect of paroxetine in an animal model of cardiac hypertrophy (CH), focusing on its effect on GRK2-mediated NF-κB-regulated expression of prohypertrophic and profibrotic genes. Wistar albino rats were administered normal saline, paroxetine, or fluoxetine, followed by isoproterenol to induce CH. The cardioprotective effects of the treatments were determined by assessing cardiac injury, inflammatory biomarker levels, histopathological changes, and hypertrophic and fibrotic genes in cardiomyocytes. Paroxetine pre-treatment significantly decreased the HW/BW ratio (p < 0.001), and the expression of prohypertrophic and profibrotic genes Troponin-I (p < 0.001), BNP (p < 0.01), ANP (p < 0.001), hydroxyproline (p < 0.05), TGF-ß1 (p < 0.05), and αSMA (p < 0.01) as well as inflammatory markers. It also markedly decreased pIκBα, NFκB(p105) subunit expression (p < 0.05) and phosphorylation. The findings suggest that paroxetine prevents pathological cardiac remodeling by inhibiting the GRK2-mediated IκBα/NF-κB signaling pathway.


Assuntos
Insuficiência Cardíaca , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Paroxetina/farmacologia , Paroxetina/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Isoproterenol/toxicidade , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Remodelação Ventricular , Miócitos Cardíacos/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Ratos Wistar , Expressão Gênica
17.
Chin J Physiol ; 66(5): 306-312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929341

RESUMO

Acute cardiomyopathy is a significant global health concern and one of the leading causes of death in developed countries. Prior studies have shown an association between acute cardiomyopathy and low vitamin D levels. Although paricalcitol, a vitamin D receptor (VDR) activator, has demonstrated clinical benefits in patients with advanced kidney disease, its effect on cardiac remodeling in cardiomyopathy is unknown. This study aimed to investigate the relative effects of paricalcitol on cardiomyopathy in rats. Wistar-Kyoto rats were administered vehicle (sham control group) or isoproterenol to induce cardiomyopathy. Rats administered isoproterenol were subsequently treated with paricalcitol (experimental group) or vehicle (isoproterenol group). Picrosirius red and immunofluorescence staining were used to analyze cardiac fibrosis and hypertrophy. Immunohistochemistry staining was used to confirm the molecular mechanisms involved in isoproterenol-induced cardiomyopathy in rats. Injection of paricalcitol could reduce collagen and transforming growth factor-beta 1 (TGF-ß1) levels while activating fibroblast growth factor receptor 1 (FGFR1) and fibroblast growth factor-23 (FGF23) without the help of Klotho, thereby reducing myocardial hypertrophy and fibrosis. As a VDR activator, paricalcitol reduces isoproterenol-induced cardiac fibrosis and hypertrophy by reducing the expression of TGF-ß1 and enhancing the expression of VDR, FGFR1, and FGF23.


Assuntos
Cardiomiopatias , Fator de Crescimento Transformador beta1 , Humanos , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima , Isoproterenol/toxicidade , Fator de Crescimento Transformador beta/metabolismo , Regulação para Baixo , Fator de Crescimento de Fibroblastos 23 , Ratos Endogâmicos WKY , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Fibrose , Fatores de Crescimento Transformadores/metabolismo
18.
Biotech Histochem ; 98(8): 567-577, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37814775

RESUMO

We investigated the effects of pravastatin (PRAVA) on isoprenaline (ISP) induced cardiac fibrosis using four groups of mice: untreated control, PRAVA, ISP, ISP + PRAVA groups. ISP, 20 mg/kg, was administered subcutaneously daily for 14 days. PRAVA, 20 mg/kg, was administered orally daily for 14 days. Mice were sacrificed on day15 and heart and blood samples were collected to investigate cardiac injury markers. The mean body weight for the ISP group on day 15 was decreased significantly compared to day 0; PRAVA increased the mean body weight slightly on day 15 of treatment compared to day 0. The heart:body weight ratio was increased in the ISP group compared to the control group, but the ratio was returned to near control ratio in the PRAVA + ISP group. The serum creatine kinase-myocardial band (CK-MB) level was reduced significantly in the PRAVA + ISP group compared to the ISP group. Serum triglyceride level was decreased significantly in ISP + PRAVA group compared to the ISP group. PRAVA administration significantly reduced tissue collagen I and III levels in the ISP + PRAVA group compared to the ISP group. Lipid oxidation was decreased and reduced glutathione activity was increased in the PRAVA + ISP group compared to the ISP group. IL-6, α-SMA, CTGF, TGF-ß and SMAD-3 gene expressions were decreased in the PRAVA + ISP group compared to the ISP group. We found fewer inflammatory cells and less fibrosis in heart tissue in the PRAVA + ISP group compared to the ISP group. PRAVA decreased ISP induced cardiac fibrosis by reducing oxidative stress, collagen deposition and inflammation, as well as by decreasing expression of TGF-ß, SMAD-3 and CTGF genes.


Assuntos
Colágeno , Pravastatina , Camundongos , Animais , Isoproterenol/toxicidade , Pravastatina/farmacologia , Fibrose , Fator de Crescimento Transformador beta , Peso Corporal
19.
Chem Biol Interact ; 385: 110745, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806379

RESUMO

Myocardial infarction (MI) is a life-threatening ischemic disease and is one of the leading causes of morbidity and mortality worldwide. Punicalagin (PU), the major ellagitannin found in pomegranates, is characterized by multiple antioxidant activities. The aim of this study is to assess the protective effects of PU against isoproterenol (ISO)-induced acute myocardial damage and to investigate its underlying vascular mechanisms using rat model. METHODS: Rats were randomly divided into five groups and were treated orally (p.o.) with PU (25 and 50 mg/kg) for 14 days. ISO was administered subcutaneously (S.C.) (85 mg/kg) on the 15th and 16th days to induce Myocardial infarction. Cardiac markers, oxidative stress markers, and inflammatory cytokines levels were determined in the heart tissue. Immunohistochemistry analysis was performed to determine the protein expression pathways of inflammation, apoptosis and oxidative stress (Nuclear factor erythroid 2-related factor 2 (Nrf-2), and heme oxygenase-1 (HO-1) in all the groups. In silico study was carried out to evaluate the molecular interaction of PU with some molecular targets. RESULTS: Our results showed that ISO-induced cardiac tissue injury was evidenced by increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH), associated with several histopathological changes. ISO also induced an increase of MDA, PCO, NO, and 8-hydroxy-2-deoxyguanosine (8-OHdG), along with a decrease of antioxidant enzyme activities in the myocardial tissues. In addition, an increase of TNF-α, NF-κB, IL-6, IL-1ß, iNOS, Nrf2 and (HO-1) was observed. Pre-treatment with PU reduced myocardial infract area, ameliorated histopathological alterations in myocardium, and decreased activities of myocardial injury marker enzymes in ISO-induced rats. In addition, PU remarkably restored ISO-induced elevation of lipid peroxidation and decrease of antioxidants, significantly reduced myocardial pro-inflammatory cytokines concentrations in this animal model. Molecular docking analysis of PU with protein targets showed potent interactions with negative binding energies. In conclusion, PU can protect the myocardium from oxidative injury, inflammatory response, and cell death induced by ISO by upregulating Nrf2/HO-1 signaling and antioxidants.


Assuntos
Taninos Hidrolisáveis , Infarto do Miocárdio , Ratos , Animais , Isoproterenol/toxicidade , Taninos Hidrolisáveis/farmacologia , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/metabolismo , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Apoptose
20.
Molecules ; 28(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630419

RESUMO

Bottle gourd (BG) oil (family Cucurbitaceae) has several pharmacological activities including a reduction of the hazard of cardiovascular and atherosclerosis conditions. This work aimed to develop and optimize self-dispersing lipid formulations (SDLFs) of BG oil by applying a full 32 factorial design. The formulation variables (oil concentration and surfactant mixture ratio) showed an obvious impact on the characters of the prepared BG-SDLFs including droplet size (DS), polydispersity index (PDI), emulsification time (ET), and transmission percentage (Tr%). The optimum BG-SDLF composed of 30% oil and Tween 80/Cremophor® RH40 (1:1) showed good emulsification characteristics and a better drug release profile compared with BG oil. In vivo study in isoproterenol-injected rats showed that BG oil and the optimized BG-SDLF improved cardiac function, by elevating the miRNA-23a gene expression level and decreasing miRNA-21 gene expression. They also caused the inhibition of the plasma B-type natriuretic peptide (BNP), N-terminal proatrial natriuretic peptide (NT-pro-BNP), cystatin c, galectin-3, lipoprotein-associated phospholipase A2 (Lp-PLA2), matrix metallopeptidase 2 (MMP2), cardiac troponin I (cTnI), and cardiac troponin T (cTnT). Our study demonstrated that BG oil and the optimized BG-SDLF provided a cardioprotection against isoproterenol-induced cardiac toxicity with better results in groups treated with the optimized BG-SDLF.


Assuntos
Cucurbita , MicroRNAs , Animais , Ratos , Isoproterenol/toxicidade , Metaloproteinase 2 da Matriz/genética , Cardiotoxicidade , Excipientes , Endopeptidases , Lipídeos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...